miR-30 family members negatively regulate osteoblast differentiation.

نویسندگان

  • Tingting Wu
  • Haibo Zhou
  • Yongfeng Hong
  • Jing Li
  • Xinquan Jiang
  • Hui Huang
چکیده

miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3' untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5)

MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17-24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast di...

متن کامل

miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2

A screen of microRNAs preferentially expressed in osteoblasts identified members of the miR-34 family as regulators of osteoblast proliferation and/or differentiation. Osteoblast-specific gain- and loss-of-function experiments performed in vivo revealed that miR-34b and -c affected skeletogenesis during embryonic development, as well as bone mass accrual after birth, through two complementary c...

متن کامل

miR-30 Family microRNAs Regulate Myogenic Differentiation and Provide Negative Feedback on the microRNA Pathway

microRNAs (miRNAs) are short non-coding RNAs that can mediate changes in gene expression and are required for the formation of skeletal muscle (myogenesis). With the goal of identifying novel miRNA biomarkers of muscle disease, we profiled miRNA expression using miRNA-seq in the gastrocnemius muscles of dystrophic mdx4cv mice. After identifying a down-regulation of the miR-30 family (miR-30a-5p...

متن کامل

miR-34s keep osteoblasts bone idle

miR-34s keep osteoblasts bone idle T he development of bone-forming osteoblasts is controlled by transcription factors such as Runx2, Osterix, and ATF4, which, in turn, are regulated by a variety of nuclear proteins that inhibit or activate these factors. miRNAs have also been implicated in osteoblast differentiation, though little is known about the effects of individual miRNAs on skeletogenes...

متن کامل

Estrogen stimulates osteoprotegerin expression via the suppression of miR-145 expression in MG-63 cells

Osteoprotegerin (OPG) is implicated in the pathogenesis of postmenopausal osteoporosis, and other metabolic bone diseases caused by estrogen deficiency. Previous studies have demonstrated that estrogen may stimulate OPG expression in osteoblast cells at the transcriptional level; however, whether estrogen can regulate OPG expression at a post-transcriptional level remains elusive. The present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 10  شماره 

صفحات  -

تاریخ انتشار 2012